Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 66(2): 163-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37244882

RESUMO

Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.


Assuntos
Metodologias Computacionais , Simulação de Dinâmica Molecular , Teoria Quântica , Dobramento de Proteína , Biologia Computacional
4.
Ann Biomed Eng ; 52(3): 451-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428337

RESUMO

Large language models or ChatGPT have recently gained extensive media coverage. At the same time, the use of ChatGPT has increased deistically. Biomedical researchers, engineers, and clinicians have shown significant interest and started using it due to its diverse applications, especially in the biomedical field. However, it has been found that ChatGPT sometimes provided incorrect or partly correct information. It is unable to give the most recent information. Therefore, we urgently advocate a domain-specific next-generation, ChatBot for biomedical engineering and research, providing error-free, more accurate, and updated information. The domain-specific ChatBot can perform diversified functions in biomedical engineering, such as performing innovation in biomedical engineering, designing a medical device, etc. The domain-specific artificial intelligence enabled device will revolutionize biomedical engineering and research if a biomedical domain-specific ChatBot is produced.


Assuntos
Inteligência Artificial , Engenharia Biomédica , Bioengenharia , Idioma , Software
5.
J Exp Orthop ; 10(1): 128, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038796

RESUMO

ChatGPT has quickly popularized since its release in November 2022. Currently, large language models (LLMs) and ChatGPT have been applied in various domains of medical science, including in cardiology, nephrology, orthopedics, ophthalmology, gastroenterology, and radiology. Researchers are exploring the potential of LLMs and ChatGPT for clinicians and surgeons in every domain. This study discusses how ChatGPT can help orthopedic clinicians and surgeons perform various medical tasks. LLMs and ChatGPT can help the patient community by providing suggestions and diagnostic guidelines. In this study, the use of LLMs and ChatGPT to enhance and expand the field of orthopedics, including orthopedic education, surgery, and research, is explored. Present LLMs have several shortcomings, which are discussed herein. However, next-generation and future domain-specific LLMs are expected to be more potent and transform patients' quality of life.

6.
Mol Biotechnol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095823

RESUMO

Major countries like the USA, European Union, UK, Japan, Canada, Australia, Singapore, and China have taken significant initiatives to develop quantum computation infrastructure. India has also taken several steps to join the quantum computation family. The Indian government has taken several initiatives to build the nation's infrastructure on quantum computation and participate in the global quantum landscape. The Indian government has created a roadmap in this direction. The significant steps are: firstly, noteworthy budget allocation (1.12 billion USD in 2020 and 734 million USD for the National Quantum Mission in 2023); secondly, 21 quantum hubs are being developed throughout the country; thirdly, 4 quantum research parks have been created and finally, Department of Science and Technology (DST) has initiated QuEST (Quantum Enabled Science and Technology) programme during 2017-18. The article also discusses other effective strategies and moves by the Indian government, like different ambitious national missions on quantum science and technology to create the country's ecosystem. In that direction, the article addresses the opportunities and challenges of quantum science and technology for India. However, the Indian government should encourage quantum computation research more for the country's development. Finally, the information provided here depicts an overall view of India's quantum computation landscape.

8.
Sci Rep ; 13(1): 22583, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114542

RESUMO

Foot-and-mouth disease (FMD) is a severe contagious viral disease of cloven-hoofed animals. In India, a vaccination-based official FMD control programme was started, which got expanded progressively to cover entire country in 2019. The serological tests are used to determine non-structural protein based sero-prevalence rates for properly implementing and assessing the control programme. Since 2008, reporting of the FMD sero-surveillance was limited to the serum sample-based serological test results without going for population-level estimation due to lack of proper statistical methodology. Thus, we present a computational approach for estimating the sero-prevalence rates at the state and national levels. Based on the reported approach, a web-application ( https://nifmd-bbf.icar.gov.in/FMDSeroSurv ) and an R software package ( https://github.com/sam-dfmd/FMDSeroSurv ) have been developed. The presented computational techniques are applied to the FMD sero-surveillance data during 2008-2021 to get the status of virus circulation in India under a strict vaccination policy. Furthermore, through various structural equation models, we attempt to establish a link between India's estimated sero-prevalence rate and field FMD outbreaks. Our results indicate that the current sero-prevalence rates are significantly associated with previous field outbreaks up to 2 years. Besides, we observe downward trends in sero-prevalence and outbreaks over the years, specifically after 2013, which indicate the effectiveness of various measures implemented under the FMD control programme. The findings of the study may help researchers and policymakers to track virus infection and identification of potential disease-free zones through vaccination.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Prevalência , Anticorpos Antivirais , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Surtos de Doenças/veterinária , Índia/epidemiologia
9.
Front Artif Intell ; 6: 1237704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028668

RESUMO

The release of ChatGPT has initiated new thinking about AI-based Chatbot and its application and has drawn huge public attention worldwide. Researchers and doctors have started thinking about the promise and application of AI-related large language models in medicine during the past few months. Here, the comprehensive review highlighted the overview of Chatbot and ChatGPT and their current role in medicine. Firstly, the general idea of Chatbots, their evolution, architecture, and medical use are discussed. Secondly, ChatGPT is discussed with special emphasis of its application in medicine, architecture and training methods, medical diagnosis and treatment, research ethical issues, and a comparison of ChatGPT with other NLP models are illustrated. The article also discussed the limitations and prospects of ChatGPT. In the future, these large language models and ChatGPT will have immense promise in healthcare. However, more research is needed in this direction.

10.
J Adv Res ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992995

RESUMO

BACKGROUND: The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. THE AIM OF REVIEW: This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. KEY SCIENTIFIC CONCEPTS OF THE REVIEW: The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.

11.
Front Plant Sci ; 14: 1256186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877081

RESUMO

The Lateral Organ Boundaries Domain (LBD) containing genes are a set of plant-specific transcription factors and are crucial for controlling both organ development and defense mechanisms as well as anthocyanin synthesis and nitrogen metabolism. It is imperative to understand how methylation regulates gene expression, through predicting methylation sites of their promoters particularly in major crop species. In this study, we developed a user-friendly prediction server for accurate prediction of 6mA sites by incorporating a robust feature set, viz., Binary Encoding of Mono-nucleotide DNA. Our model,MethSemble-6mA, outperformed other state-of-the-art tools in terms of accuracy (93.12%). Furthermore, we investigated the pattern of probable 6mA sites at the upstream promoter regions of the LBD-containing genes in Triticum aestivum and its allied species using the developed tool. On average, each selected species had four 6mA sites, and it was found that with speciation and due course of evolution in wheat, the frequency of methylation have reduced, and a few sites remain conserved. This obviously cues gene birth and gene expression alteration through methylation over time in a species and reflects functional conservation throughout evolution. Since DNA methylation is a vital event in almost all plant developmental processes (e.g., genomic imprinting and gametogenesis) along with other life processes, our findings on epigenetic regulation of LBD-containing genes have dynamic implications in basic and applied research. Additionally, MethSemble-6mA (http://cabgrid.res.in:5799/) will serve as a useful resource for a plant breeders who are interested to pursue epigenetic-based crop improvement research.

13.
Mol Biotechnol ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37717248

RESUMO

The review article presents the recent progress in quantum computing and simulation within the field of biological sciences. The article is designed mainly into two portions: quantum computing and quantum simulation. In the first part, significant aspects of quantum computing was illustrated, such as quantum hardware, quantum RAM and big data, modern quantum processors, qubit, superposition effect in quantum computation, quantum interference, quantum entanglement, and quantum logic gates. Simultaneously, in the second part, vital features of the quantum simulation was illustrated, such as the quantum simulator, algorithms used in quantum simulations, and the use of quantum simulation in biological science. Finally, the review provides exceptional views to future researchers about different aspects of quantum simulation in biological science.

15.
Brief Funct Genomics ; 22(5): 401-410, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158175

RESUMO

RNA-binding proteins (RBPs) are essential for post-transcriptional gene regulation in eukaryotes, including splicing control, mRNA transport and decay. Thus, accurate identification of RBPs is important to understand gene expression and regulation of cell state. In order to detect RBPs, a number of computational models have been developed. These methods made use of datasets from several eukaryotic species, specifically from mice and humans. Although some models have been tested on Arabidopsis, these techniques fall short of correctly identifying RBPs for other plant species. Therefore, the development of a powerful computational model for identifying plant-specific RBPs is needed. In this study, we presented a novel computational model for locating RBPs in plants. Five deep learning models and ten shallow learning algorithms were utilized for prediction with 20 sequence-derived and 20 evolutionary feature sets. The highest repeated five-fold cross-validation accuracy, 91.24% AU-ROC and 91.91% AU-PRC, was achieved by light gradient boosting machine. While evaluated using an independent dataset, the developed approach achieved 94.00% AU-ROC and 94.50% AU-PRC. The proposed model achieved significantly higher accuracy for predicting plant-specific RBPs as compared to the currently available state-of-art RBP prediction models. Despite the fact that certain models have already been trained and assessed on the model organism Arabidopsis, this is the first comprehensive computer model for the discovery of plant-specific RBPs. The web server RBPLight was also developed, which is publicly accessible at https://iasri-sg.icar.gov.in/rbplight/, for the convenience of researchers to identify RBPs in plants.


Assuntos
Arabidopsis , Humanos , Animais , Camundongos , Arabidopsis/genética , Arabidopsis/metabolismo , Algoritmos , Evolução Biológica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Biologia Computacional/métodos , Sítios de Ligação
16.
J Infect Public Health ; 16(7): 1048-1056, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196368

RESUMO

BACKGROUND: The global research community has made considerable progress in therapeutic and vaccine research during the COVID-19 pandemic. Several therapeutics have been repurposed for the treatment of COVID-19. One such compound is, favipiravir, which was approved for the treatment of influenza viruses, including drug-resistant influenza. Despite the limited information on its molecular activity, clinical trials have attempted to determine the effectiveness of favipiravir in patients with mild to moderate COVID-19. Here, we report the structural and molecular interaction landscape of the macromolecular complex of favipiravir-RTP and SARS-CoV-2 RdRp with the RNA chain. METHODS: Integrative bioinformatics was used to reveal the structural and molecular interaction landscapes of two macromolecular complexes retrieved from RCSB PDB. RESULTS: We analyzed the interactive residues, H-bonds, and interaction interfaces to evaluate the structural and molecular interaction landscapes of the two macromolecular complexes. We found seven and six H-bonds in the first and second interaction landscapes, respectively. The maximum bond length is 3.79 Å. In the hydrophobic interactions, five residues (Asp618, Asp760, Thr687, Asp623, and Val557) were associated with the first complex and two residues (Lys73 and Tyr217) were associated with the second complex. The mobilities, collective motion, and B-factor of the two macromolecular complexes were analyzed. Finally, we developed different models, including trees, clusters, and heat maps of antiviral molecules, to evaluate the therapeutic status of favipiravir as an antiviral drug. CONCLUSIONS: The results revealed the structural and molecular interaction landscape of the binding mode of favipiravir with the nsp7-nsp8-nsp12-RNA SARS-CoV-2 RdRp complex. Our findings can help future researchers in understanding the mechanism underlying viral action and guide the design of nucleotide analogs that mimic favipiravir and exhibit greater potency as antiviral drugs against SARS-CoV-2 and other infectious viruses. Thus, our work can help in preparing for future epidemics and pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , RNA Polimerase Dependente de RNA , RNA , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química
17.
Funct Integr Genomics ; 23(2): 92, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939943

RESUMO

Abiotic stresses have become a major challenge in recent years due to their pervasive nature and shocking impacts on plant growth, development, and quality. MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of specific abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational model for prediction of miRNAs associated with four specific abiotic stresses such as cold, drought, heat and salt. The pseudo K-tuple nucleotide compositional features of Kmer size 1 to 5 were used to represent miRNAs in numeric form. Feature selection strategy was employed to select important features. With the selected feature sets, support vector machine (SVM) achieved the highest cross-validation accuracy in all four abiotic stress conditions. The highest cross-validated prediction accuracies in terms of area under precision-recall curve were found to be 90.15, 90.09, 87.71, and 89.25% for cold, drought, heat and salt respectively. Overall prediction accuracies for the independent dataset were respectively observed 84.57, 80.62, 80.38 and 82.78%, for the abiotic stresses. The SVM was also seen to outperform different deep learning models for prediction of abiotic stress-responsive miRNAs. To implement our method with ease, an online prediction server "ASmiR" has been established at https://iasri-sg.icar.gov.in/asmir/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for identification of specific abiotic stress-responsive miRNAs in plants.


Assuntos
MicroRNAs , MicroRNAs/genética , Melhoramento Vegetal , Plantas/genética , Aprendizado de Máquina , Cloreto de Sódio , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
18.
Eur J Ophthalmol ; 33(5): 1922-1930, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36927043

RESUMO

PURPOSE: PACG is one of the leading causes of blindness where lens thickness is a major risk factor for narrow-angle individuals. To our knowledge, no literature has been reported on candidate gene for lens thickness as a quantitative trait (QT). Here, we performed a genome-wide association analysis on lens thickness in the narrow-angle individuals. MATERIALS AND METHODS: We conducted a genome-wide association study (GWAS) in the narrow angle individuals to investigate comprehensive genetic insights on lens thickness. RESULTS: In QT-GWAS, we identified 145 genome-wide suggestive significant loci in the discovery cohort. Subsequently, we observed 13 SNPs that showed statistical significance around the region of PTRRM. Regional association analysis for top significant genotyped variants identified PTPRM as the most likely candidate for increased LT. Integrative bioinformatic analyses confirmed that the associated genomic region has potential regulatory roles for modulating transcription as enhancers. In the replication cohort, the sentinel genotype SNP was further associated significantly (P-value =0.000448) with high LT individuals. In both cohorts, the T allele of rs1941137 in the PTPRM gene indicates as a risk allele for the increased LT. CONCLUSION: In this study, we discovered evidence of a genomic association between chromosomal areas around the PTPRM and increased lens thickness, resulting in a narrow angle. The regulatory components corresponding to PTPRM variations might have a role in the thicker lens. We report that the genomic region near PTPRM, a gene of potential interest, is associated with increased lens thickness.


Assuntos
Oftalmopatias , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Fenótipo , Genótipo , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
19.
Infect Disord Drug Targets ; 23(5): e280223214111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852815

RESUMO

In the German towns of Marburg, Frankfurt, and Belgrade in 1967, this single negativestranded RNA virus was initially discovered. The importation of infected grivet monkeys from Uganda is what caused this virus-related sickness. As a result of the early link between viruses and non-human primates, this virus is frequently referred to as vervet monkey sickness. This virus causes Marburg hemorrhagic fever in humans and non-human primates. Human endothelial cells serve as the primary vehicle for replication. According to a 2009 report, the virus was being stored in Egyptian fruit bats (Rousettus aegyptiacus). Body fluids, unprotected sex, broken or injured skin, and other bodily fluids are the main routes of transmission. After the incubation period, symptoms like chills, headaches, myalgia, and stomach pain start to show up. There is no specific medication for such an infection, only hydration therapy and adequate oxygenation are followed. The following diagnostic techniques can be used to confirm the diagnosis: (i) an antibody-capture enzyme linked immunosorbent assay (ELISA); ii) an antigen capture ELISA test; iii) a serum neutralization test; iv) an RT PCR assay; v) electron microscopy; or vi) virus isolation by cell culture. Because MARV is a risk group 4 infection, laboratory staff must take strict precautions (RG-4).


Assuntos
COVID-19 , Quirópteros , Marburgvirus , Animais , Humanos , Chlorocebus aethiops , Marburgvirus/genética , SARS-CoV-2 , Células Endoteliais , Primatas
20.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36416116

RESUMO

DNA-binding proteins (DBPs) play crucial roles in numerous cellular processes including nucleotide recognition, transcriptional control and the regulation of gene expression. Majority of the existing computational techniques for identifying DBPs are mainly applicable to human and mouse datasets. Even though some models have been tested on Arabidopsis, they produce poor accuracy when applied to other plant species. Therefore, it is imperative to develop an effective computational model for predicting plant DBPs. In this study, we developed a comprehensive computational model for plant specific DBPs identification. Five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms. In particular, support vector machine achieved highest repeated 5-fold cross-validation accuracy of 94.0% area under receiver operating characteristic curve (AUC-ROC) and 93.5% area under precision recall curve (AUC-PR). With an independent dataset, the developed approach secured 93.8% AUC-ROC and 94.6% AUC-PR. While compared with the state-of-art existing tools by using an independent dataset, the proposed model achieved much higher accuracy. Overall results suggest that the developed computational model is more efficient and reliable as compared to the existing models for the prediction of DBPs in plants. For the convenience of the majority of experimental scientists, the developed prediction server PlDBPred is publicly accessible at https://iasri-sg.icar.gov.in/pldbpred/.The source code is also provided at https://iasri-sg.icar.gov.in/pldbpred/source_code.php for prediction using a large-size dataset.


Assuntos
Arabidopsis , Proteínas de Ligação a DNA , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Curva ROC , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...